This paper presents a spectrum monitoring algorithm for Orthogonal Frequency Division Multiplexing (OFDM) based cognitive radios by which the primary user reappearance can be detected during the secondary user transmission. The proposed technique reduces the frequency with which spectrum sensing must be performed and greatly decreases the elapsed time between the start of a primary transmission and its detection by the secondary network. This is done by sensing the change in signal strength over a number of reserved OFDM sub-carriers so that the reappearance of the primary user is quickly detected.
Moreover, the OFDM impairments such as power leakage, Narrow Band Interference (NBI), and Inter-Carrier Interference (ICI) are investigated and their impact on the proposed technique is studied. Both analysis and simulation show that the energy ratio algorithm can effectively and accurately detect the appearance of the primary user. Furthermore, our method achieves high immunity to frequency-selective fading channels for both single and multiple receive antenna systems, with a complexity that is approximately twice that of a conventional energy detector.